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SPAIN.
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Llana.
1 Rizada.
e | Marejadilla.

~|

Gruesa.

| Marejada.

Marejada gruesa.

Muy gruesa.

2~ | Arbolada.

Muy arbolada.

D. CLOUD SYMBOLS.

Ley, W. Clement. Cloudland. London. 189+4. p.26-27.
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Howard, Luke.
don.

Scientific name.
Nebula.
Nebula pulverea.
Nebula stillans.
Nubes informis.
Stratus quietus.
Stratus lenticularis.
Stratus maculosus.
Stratus castellatus.
Stratus precipitans.
Cumulo-rudimentnm.
Cumulus.
Cumulo-stratus.
Cumulo-nimbus.
Nimbus.
Cunmulo-stratus mammatus.
Cumulo-nimbus grandineus.
Cumulo-nimbus nivosus.
Cumulo-nimbus mammatus.
Nimbus grandincus.
Nimbus nivosus.
Nubes fulgens.
Cirrus.
Cirro-filum.
Cirro-velum.
Cirro-macula.
Cirro-velum mammatum.

1803. p. 14

Berlin, 1894.)

\ Cirrus.

o Cumulus.

— Stratus.

\o Cirro-cumulus.
\_ Cirro-stratus.
¢— Cumulo-stratus.

On the modifications of clouds.
(Hellmann's “Neudrucke,” No. 3,

English name.
Fog.
Dust fog.
Wet fog.
Scud.
Quict clowd.
Lenticular cloud.
Mackerel c¢loud.
Turret cloud.
Plane shower.
Rudiment.
Heap cloud.
Anvil cloud.
Shower cloud.
Rainfall cloud.
Tubercled anvil cloud.
Hail shower.
Snow shower.
Festooned shower cloud.
Hail-fall.
Snow-fall.
Luminous cloud.
Curl cloud.
Gossamer cloud.
Veil cloud.
Speckle eloud.
Draped veil cloud.

\o_ Cirro-cumulo-stratus, or Nimbus.

T.on-
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Formerly used by Iowa Weather Service. (Adopted

1876.)

-~ Cirrus.

£~ Cirro-stratus.

£ Cirro-cumulus.

~ Cumulus.

¢/~ Pallio-cirrus.

nn Pallio-cumulus.

/7~ Fracto-cumulus.

= Polar bands, drawn as placed across the sky with —
indicating motion; thus \— bands NW-SE moving
toward the cast.

E. LITERAL SYMBOLS.

In addition to arbitrary symbols, numerous literal sym-
bols—usually the initial letter or letters of meteorological
terms in various languages—have been used in meteoro-
logical registers and on weather mups. Only a few of
these are included in the foregoing lists. The rest lie
beyond the scope of the present compilation.

ON THE COEFFICIENT OF CORRELATION AS A MEASURE OF
RELATIONSHIP.

By CrariLiEs N. MooRre.
{Dated: University of Cincinnati, Department. of Mathematies, Apr. 17, 1916,)

In recent years several applications of the theory of
correlation have heon made in connection with meteor-
ological investigations.!  Consoquently a brief discussion
of the significance of a correlation coetficient and its re-
liability as a measure of relationship may be of interest
to readers of the MonTHLY WEATHER REVIEW. The
theoretical discussion in the present paper is in substance
the same as that given by the writer in a recent paper in
Science.? The bearing of that discussion on applications
in meteorology is given heve for the first time.

The theory of correlation deals with the relationship
between two variable quantitics whose variations are due
in part or entirely to common causes. A certain quan-
tity, », known as a coelficient of correlation, is computed,
and from its value inferences are drawn as to the extent
to which the variations of the two quantitios are affected
in the same way by the same causes, or as to the extent
to which the variation of one quantity affects that of the
other.

The formula for 7 in terms of a pairs of observed values
of two variables x and v, is

if{ (g —x0) (Yi—Yo)

J (1)

i=n~ = _. i=n =
‘/ S - T (W—Y)?
=1 i=1

where 1z, is the moean of the z values and y, the mean of
the v values.? The value of » obtained from this formula

L 8ce J. Warren Smith in MoONTHLY WEATHER REVIEW, February, 1914, 42:78; and
ibiil,, 1915, 43:222,

A. Sresncwsky, in Meteorologische Zeitschrift, Braunschweig, December, 1914, 31: 508,

L. Siciner, in Meteorologische Zeitschrift, Braunschweig, September, 1915, 32: 419.

2 Moore, Chas. N. On the coeflicient of correlation as a measure of relationship.
Science, New York, October 22, 1915 (N8), 42:575-579.

3 For an account of the process of computing r from a table of obhserved values of two
Y‘.?lriagl’eit;’::b the paper by J. Wurren Smith, MoNTHLY WEATHER REVIEW, February,

, 42:79-50.
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will never be less than —1 nor greater than +1, and in

eneral will have a value lying between these two values.
fn case the variations of the two quantities depend en-
tirely on common causes in such a way that one variable
can be expressed in terms of the other by means of an
equation, r may take on one of the extreme values +1
or —1. It will take on one of these values if one variable
can be expressed linearly in terms of the other; i. e., if

y=m+b7

where a and b are constants. In this case it will be +1
if a>0 and —1 if a<0; in all other cases it will have a
value lying between these two values. In case the two
variables are entirely independent of each other in the
sense that their variations lga.ve no common causes, r will
be zero or very near to zero if the number of observed
values of z and ¥ is large enough to eliminate the effects
of chance. If the value of r lies between 0 and —1 or
between 0 and + 1, it may be due to the fact that there is
a relation between the two variables that is not linear, or
to the fact that the variations of the two quantities are
not due to common causes in such a way that one can be
expressed in terms of the other alone.

n general the variable quantities under discussion will
have their variations subject to a great variety of causes.
Let us assume, then, that

r=f, (e, € ..., €n),
y=r (&, & ..y &),

where ¢, €, ..., €y aTe m independent variables, and f; and
£, are two different expressions in terms of those variables.
If we are to be able to give any sort of definite interpreta-
tion to the value of r, it is necessary to assume further
that the f’s are, to a good degree of approximation, linear
expressions in the ¢'s, i. e., that the equations

L =0y € -+ A€+ ... + AQypem, (2)
Y =0y €+ Upa€y + ... + Uoptry,

where the a’s are constants, are approximately true. If
now we represent the deviation of each e from its mean
value by a v with the corresponding subscript, we obtain
readily from the last equations

X — Xy =Gy, ¥, + Q¥ + oo + Gy, 3)
Y — Yo = Ay T Agy¥; + ... + Ayy¥y
where z, and y, are the mean values of z and v, re-
spectively. It is evident that the mean value of each v
15 zero, since each represents the deviation of the corres-
ponding e from its mean value.
Suppose now that (v, v/), (@', v/'’), ... (@@ ,v™)
are n pairs of observed values of v; and ;. Since the ¢'s
areindependent variables, we shall have if n is very large,

Ex”‘m o = 0. 4)

For in that case there will be associated with each par-
ticular value of v; & series of values of v, whose mean is
zero. Hence, if we collect terms invoivin the same
values of »; the sum of each set of terms will be zero, and
therefore the whole summation in (4) will reduce to zero.
For values of n small enough to make the computation
of r practicable, equation (4) will in general be only
apsroximately true. The larger n is, the better in gen-
eral the approximation will be.

47061—16——3
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We will now substitute the values of z—z, and y—y,
given by (3) in (1) and take account of (4) in making the
substitution. We obtain

Z 0y 8¢
r= ’ (5)

= =m
-\/ z a“’ 84’. 2 0;2‘2 8‘2
=1 =1

where we have set

V!t + v,

8
(i=1,2,...m).

n (6)

The &'s thus defined are known as the standard deviations
of the corresponding ¢’s. The formula (5) for r is well
adapted to the discussion of the connection between the
value of 7 and the degree of relationship between x and v.

To illustrate the way in which we can interpret the
significance of r by means of equation (5) we will con-
sider a particular example. Suppose the two variables
z and y represent the wind velocities measured at the
same instant in two different localities.* If the localities
are not too far apart it is reasonable to suppose that the
two velocities will depend in part on the same causes.
Such a state of affairs will be represented mathematic-
ally by the equations in (2) if we suppose that the a's in
the first equation corresponding to a certain set of the
¢'s are zero, and the a’s in the second equation corre-
sponding to a different set of ¢'s are zero.

We will suppose then that the first p of the a's in the
first equation are zero and the last ¢ of those in the
second equation are zero, 1. e., that

Gy =0p= ... =0p=0,
)
Gyym—gqts = Baym—gr2= . » . =8yp=0.

In order to begin with a fairly simple example we will
suppose further that we are dealing with a case where
each of the other a’s involved is equal to a single positive

quantity a, i. e., where

G pt1 =0, pra= « . « Q.

y ’ (8)

=0y =0p= . ..

It is readily seen that the s's defined by equation (6) de-
pend upon the scales used in the measurement of the
different ¢’s. Therefore there will be no loss of generality
in supposing that these scales are so chosen that each of
the s's is equal to a single quantity s, i. e., that

ay, m—qg=a>0.

. 8p=8. )]

8, =8,=8= ..

If we substitute the values given by (7), (8), and (9) in
(5), we obtain

e (m—p-—q)a’s® _ m—p—q
V(m—p)a*s*(m—q)ais® +/(m—p)(m—gq)

(10)

We shall now make use of (10) to indicate one way in
which the value of r throws light upon the relationship

4 The correlation between two such variables is considered in the paper by Sresnewsky
referred to above.
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between a variation in z and a corresponding variation in
y. Let us suppose that all the ¢s on which z depends,
1. e., all the ¢'s for which the corresponding a’s on the
right-hand side of the first equation m (1) are not zero,
are increased by a certain quantity d, whereas all the
other €'s, i. e., a]f the ¢’s on which y depends but z does not
depend remain constant. If we represent by z’ the new
value of z, and by ¥’ the new value of y after the increase
in the ¢'s, then when we take account of equations (7),
(8), and (2) we have readily

Y —y=(m—p—q)ad, \
z'—z= (7n—21:)a3. (1)

Since the units in terms of which 2 and ¥ are measured
are in general arbitrary, it is apparent that we need to
introduce some standard unit for each of them before we
can attach any definite significance to a comparison of
their changes in value. The natural way to choose a
unit for this purpose is to relate its size in some definite
way to the range of variability of the variable quantity
concerned. This can be done by choosing as a unit the
standard deviation of each variable. The standard devia-
tions of the ¢'s, as stated above, are given by equation (6).
The standard deviation of any other variable is defined
in an analogous manner. Hence in view of equations
(3), (4), (8), (7), (8), and (9), we have for the standard
deviations of = and y

sz=\/m——;pas, 8= ‘/m—;qas-

R may be said to be a good measure of the closeness of
relationship between the two variables since it measures
the extent to which a typical change in one variable
causes a corresponding change in the other variable. If
now we set

(12)

_ W -yls
B= o)

we obtain from (11) and (12)

(13)

___m-p—g
B=m—p) m—0

Hence in this particular case r=R, and r may therefore
be said to be a good measure of the degree of relationship
between z and .

It is easy to see, however, that cases may arise in
which r and B differ considerably in value. Suppose,
for example, that the a’s of equation (2) satisfy the
following conditions:

G =0p= * * * QGp=0gyym—prn= * * * Uy =0,

Uy =0y= * * * Gyp=0Cyyp—py = * @yp=10a,

Gppts = * * * Qpypia= * * * Qyp—op=4a. (".’=1; 2,),
(m=102p)

'Elilen we find by substituting in formule (5) and (13)
at
r=0.5, R=0.9.

Under still other suppositions the discrepancy between
the values of r and B may be still greater. Hence it is
af)pa.rent that » may not always be a good measure of the
closeness of relationship between two variable quantities.
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The chief conclusion to be drawn from the foregoin,
discussion is to a considerable extent a negative one. I%
is shown that it is possible to state conditions under
which the coefficient of correlation as calculated from
e?uation (1) will furnish a reliable measure of the degree
of relationship between two variable quantities. But it
is also shown that in cases where these conditions are not
approximately fulfilled, the coefficient of correlation will
not necessarily be a good measure of this relationship.
As there seems to be no way of determining in any par-
ticular case whether or not the conditions we have stated
are satisfied, it is apparent that considerable caution
should be observed in drawing definite inferences from
the value of a coefficient of correlation.
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RAINFALL IN CHINA, 1900-1911.

By Co-CHiNGg CHU, A. M.
[Dated: Cambridge, Mass., Mar. 21, 1916.]
INTRODUCTION.

As the fluctuation in rainfall from year to year is great,
it is always a difficult matter to discuss the subject and
draw isohyets with accuracy and intelligence unless we
have a long series of reliable observations well dis-
tributed over the region under discussion.

China has been backward on all subjects meteorological.
The data on rainfall in China are mostly spasmodic, mac-
curate, and limited to recent years only. The data on
rainfall in this article are based on Rev. Louis Froc’s
work ““La Pluie en Chine, durant une period de onze
années, 1900-1911,” published by the Catholic Mission
of Zi-ka-wei, Shanghai, China. These are, no doubt,
the most recent and at the same time the most reliable
data on the rainfall in China. In all, there are 88 sta-
tions, divided into four classes according to the length of
the record of rainfall. In the fifst class, which com-
prises 34 stations, all except 4 have data extending
through the period of 11 years. The records of the
remaining stations are incomplete, varying in length
from eight to two or three years. The stations are not
very We%l distributed, but are concentrated mostly along
the coast and the valley of the Yangtze River; in the
northwest they are entirely wanting. The area of China
proper, according to Mill’s International Geography, is
approximately 1,300,000 square miles. Assuming that
all the data of the 88 stations were available and that
they were uniformly distributed, there still would be
on}y one station to every 1,500 square miles.

t is evident that a ramnfall map based upon these data
can only be tentative. If the stations were more numer-
ous and better distributed, and if the records extended
over a longer period, the map would be probably quite
different from what it is.

RAINFALL CONTROLS.

In the main, there are three factors which control the
amount and seasonal distribution of precipitation in
China, (1) the monsoon, (2) the topography, and (3) the
cyclonic distribution.

(1) Monsoon.—The monsoon? is a seasonal wind
which is best developed in Asia, owing to the vastness of

1 A study offered as part of the requirements for the degree of A. M. at Harvard Uni-
versity in 1015; prepared under the direction of Prof. A. G. McAdie and R. De C. Ward.

2Whether the summer southeast wingd in China should be called “monsoon’ or ¢trade
wind?”’ is controversial according to Mr. B. C. Wallis. See the extract from a paper
by him, MONTHLY WEATHER REVIEW, January, 1915, 43:24.



